Transcription Network Analysis by A Sparse Binary Factor Analysis Algorithm

نویسندگان

  • Shikui Tu
  • Runsheng Chen
  • Lei Xu
چکیده

Transcription factor activities (TFAs), rather than expression levels, control gene expres- sion and provide valuable information for investigating TF-gene regulations. The underly- ing bimodal or switch-like patterns of TFAs may play important roles in gene regulation. Network Component Analysis (NCA) is a popular method to deduce TFAs and TF-gene control strengths from microarray data. However, it does not directly examine the bimodal- ity of TFAs and it needs the TF-gene connection topology to be a priori known. In this paper, we modify NCA to model gene expression regulation by Binary Factor Analysis (BFA), which directly captures switch-like patterns of TFAs. Moreover, sparse technique is employed on the mixing matrix of BFA, and thus the proposed sparse BYY-BFA al- gorithm, developed under Bayesian Ying-Yang (BYY) learning framework, can not only uncover the latent TFA profile's switch-like patterns, but also be capable of automatically shutting off the unnecessary connections. Simulation study demonstrates the effectiveness of BYY-BFA, and a preliminary application to Saccharomyces cerevisiae cell cycle data and Escherichia coli carbon source transition data shows that the reconstructed binary pat- terns of TFAs by BYY-BFA are consistent with the ups and downs of TFAs by NCA, and that BYY-BFA also works well when the network topology is unknown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Algorithm for Network Reliability Evaluation

Binary Decision Diagram (BDD) is a data structure proved to be compact in representation and efficient in manipulation of Boolean formulas. Using Binary decision diagram in network reliability analysis has already been investigated by some researchers. In this paper we show how an exact algorithm for network reliability can be improved and implemented efficiently by using CUDD - Colorado Univer...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Scalable Non-linear Beta Process Factor Analysis

We propose a non-linear extension of the factor analysis with beta process priors. This non-linear Beta process factor analysis (nBPFA) model allows the data vector to be represented by processing an invertible non-linear transformation on standard factor decomposition. We develop a scalable variational inference framework for large scale datasets, which benefits from the idea of generalizing v...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand

Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of integrative bioinformatics

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2012